
A NACROSTRUCTURE LOGIC ARRAYS. WI
OCT 79 C 0 ALFORD, N Rt MCQUAOE DASS60-7-C-0137

ULASSIFIED

0.1 GG
MN



11111 1106
II1!1'-----" 2.g°

4 4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS -I963-l



rDTIC_

0 2 !0

C9 ~80 2 1104



MACROSTRUCTURE LOGIC ARRAYS'

- -- - -- ------------ -

Final ,Atepot um te to:

Ballistic Missile Defense Advanced Technology Center EL cp
Contract Z6YC1 MAR1 3 1980

SOctober-84 1079

School of ElcrclEniern

on~blto noa

Mr.B. eley eci f/6zf /



DISCLAIMER

The views, opinions, and/or findings contained in this report are those

of the authors and should not be construed as an official Department of the

Army position, policy or decision, unless so designated by other official

documentation.

tI

Accesion for

Dt c £mt ion

Avrilnbiltv Codes

kiall and/or
DIst special



I. INTRODUCTION

The objective of this research was to investigate the concept, design

and performance analysis of a computing structure to solve linear ordinary

differential equations. Previous efforts in this area have been classified as

Digital Differential Analyzers.- This research is not an attempt to extend this

prior effort, but rather to develop an entirely new approach [1-14]. This re-

port summarizes the results of the research in four parts; (.if the concept for

a digital computing structure, (2.) the design of the computing structure,

C3Ythe performance of the computing structure and, .(4) conclusions and recommend-

ations for further research. .

II. CONCEPT

A. General

Many physical systems can be modeled by linear ordinary differential equa-

tions of order N. This equation can be solved using an analog computer or a

general purpose digital computer. The analog computer has a speed advantage

since it solves the problem using parallel computing elements. The digital

computer yields a more accurate solution, and eliminates any scaling problems

by using floating point arithmetic. However, the digital computer is slower

than the analog computer, and in most cases, is more difficult for the user to

access (15]. The research goal was to design and build a digital computing

structure which encompasses the advantages of both these computers (except for

floating point arithmetic) and avoids the difficulties of each.

B. Mathematical Forms and Solutions

A third order linear ordinary differential equation can be expressed as

y(t) + a2y(t) + ay(t) + a0y(t) = b2X(t) + b1X(t) + b0 X(t)

(1)
y(o) = C2, y(o) - Cl, y(o) = C0
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If any of the coefficients a. or b. are functions of t, this equation is

time varying. The following does not treat this case, but can be extended to

do so. In order to solve (1) using an analog computer, it is necessary to pro-

gram the computer to connect the hardware as shown in Figure 1. This structure

will then yield y(t) as a function of the input X(t). It is important to note

that the hardware elements operate in parallel resulting in high computation

speed for the analog computer. It should also be noted that the third order

differential equation in (1) and the complementary solution structure in Figure 1

can be extended to a higher order system. Since this does not add to this dis-

cussion, the extension is not carried out in this report.

A common transformation to convert (1) to a set of first order differential

equations is [161

[o lt0 1 0l Z1 (t) 0~

2 t)0 0 1Z 2(t) + 0X(t)
z (t - -a 1  -2 z 3(t)111Y(t) C [b 2  b 1 bJ + [1 (tt)(2

This set of differential equations can be solved using the structure shown in

Figure 2. In general, the integrators would be digital processors and the multi-

plier and adder blocks would also be digital hardware. This structure in

Figure 2 is rather straightforward for a third order differential equation. How-

ever, as the order increases, the bottom row of a coefficients in (2) will also

increase. This implies a larger collection of multipliers and adders for the

implementation in Figure 2, which also increases the solution time.
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An alternate transformation on (1) will yield

-a2  1 0 Z (t) b2

Z2 (t) -a1  0 1 Z2 (t) + b1  X(t)

Z3 (t) -a0  0 0 Z3 (t) b0. _ ( 3 )

Y(t) = [ o ] ZI(t)]

Z2 (t) + [0] X(t)

ZB(t)

with a solution structure as shown in Figure 3. This is the form selected for

SPOCK since the multiplier-adder group can be built with a set of modules where

each module has two multipliers and two adders. This results in a higher perform-

ance machine and some savings in hardware. The design of the SPOCK structure,

based on this mathematical formulation of the differential equation, will be

given in the next section.

III. DESIGN OF THE COMPUTING STRUCTURE

A. Architecture

1. Organization: The structure for SPOCK I is shown in Figure 4. There

are five modules; namely, (1) the processor, (2) input bus interface, (3) output

bus interface, (4) function, and (5) coefficient register modules. In addition,

a host computer is used to initialize the units, load the necessary routines,

and monitor the results. A bus controller is shown but has not been implemented

in hardware. This device is primarily a sequencer and controls the gating be-

tween all units and the busses.

2. Processor Module: Each processor is a 16-bit, fixed point computer

constructed from the Intel 3000 integrated circuit family [171. Each processor

i _-5-

.. .. . M. ,..,4 ~



x(t)

z-L3

FIGURE 3 PARALLEL DIGITAL SOLUTION OF EQUATION (3)

L*



A

Uc O E F LOGC H7

HST COEF. LCAONTRLLE

E B

RINENE

CONSTANT

7I

PROCESSOR

= PROCESSOR

i __ PROCESSOR

__ : PROCESSOR

HOSTNTRMPUTER

• , CRT DISKS PRINTER NE

i FIGURE 4 SPOCK I COMPUTING STRUCTURE

-7- 

i



has an auxiliary multiplier (16 x 16) to enhance performance and a 1024 word

RAM for microinstruction storage. A RAM was used instead of a ROM to enable

the loading of various function routines. Thus, each processor can be con-

figured as any specific function by a proper choice of microinstructions. All

tests were carried out by selecting the function to be an integrator and using

various numerical schemes to approximate the desired integration function. The

processor module is shown in Figure 5. For full parallel operation, one process-

oc module is needed for each state variable.

3. Function Module: The function module performs the calculation

F = AxB + CxD + E (3)

where F is the output and A, B, C, D and E are digital values on five input

busses. Parallel operation requires one function module for each state variable.

The structure for the function module is shown in Figure 6.

4. Bus Interface Modules: The output bus interface module is used to

latch each processor output. This value can then be applied to any one of N

busses by selection of the latch control. The input interface module is used toIlatch the outputs from the function units. One of these is then selected as the

input to each processor using the latch control lines. The number of modules

required is equal to the number of processors. The bus interface modules are

shown in Figures 7 and 8.

5. Coefficient Register Module: The constant or coefficient registers

are used to store the a. and b. constants in the state equation matrix. These
1 1

modules are register latches in the SPOCK structure. They are loaded with the

appropriate constant when the problem is initialized. The output of each latch

is applied to the appropriate bus using a sequencer to control the latch enable

lines. The module structure is shown in Figure 9.

! -8-
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If equation (1) is permitted to have time varying coefficients, it will

be necessary to change the constant registers to a circular queue. The values

would then be shifted and gated in much the same way the current configuration

handles the constants. The change would require loading of all the discrete

points when the problem is initialized, and control information to perform the

shifting operation.

IV. PERFORMANCE ANALYSIS

A. Microprogram

Each of the nine integration schemes given in Table 1 has been coded into

a microprogram for the SPOCK processors. These integration routines have com-

plexities which are reflected in the program size. This program size is given

in Table 2 as the number of microinstructions required to implement the routine.

For example, twelve microinstructions are required to implement the Modified-

Euler routine. Thus, each integration step requires the execution of these

twelve instructions.

The various integration routines execute their microinstructions sequentially

except for the Parallel Adams-Bashforth Predictor/Corrector. This routine is

implemented such that the predictor (5 microinstructions) can be computed in

parallel with the corrector (10 microinstructions) using two processors. This is

the only "parallel" integration routine which was implemented. Performance

results will reflect this parallel versus sequential implementation.

B. Function Evaluations

The evaluation of an integration step requires the evaluation of the function,

n f (Y n X ) (4)

to obtain the new value Y n+l From Table 1 it can be seen that the new point,

Y n+1 can be evaluated for any of the first seven routines if prior points have

been saved and Y is available. This function evaluation requires the use of

n

k -14-
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Table 1. Numerical Integration Methods

Euler

Yn+1 =Y + TYnl n n

Modified Euler

yp =y C + Tyc
n+1 n n

y c y c + T (p +y)
n+l n 2 nIl n

Adams-Bashforth Two Point Predictor

Yn+l =Y + TY + (Y y
n1 n n 2 (n - n-1)

A - B Two Point & Trapezoidal Corrector

p yc + T~n + T (Y - cn+l n 2 n Yn-

Parallel Predictor Corrector

yp yc +2Typ
n+l n-i +  n

y C c - yC + T np + yC

n n-i 2 n n-1

Adam's Three Point Predictor

Y 23T " 4T + 5T
n+1 n 1 Yn 3 n-I +12 Yn-2

Adam's Pair Three Point

yp 23T *c 4T cT +c 5T -
n+l n 12 n 3 n-I + 12 n-2

c c + 5T yp 2T 'c T C
Yn+1 n 12 n+1 + n 1 2 n-i

1 ~ ~ ~~~-15- _______



Table 1. Numerical Integrati n Methods (Cont'd)

Three Point Runge-Kutta

= Y +T( Y + OY 1+3 Y 2)
nl n n n+3- 4 3

yn F Xnv n

1 T'Y+F(X + -, Y+ iyn
n 3 n 3 n n

~ =FX +2T +~ 1 1Yn2 FXn + Yn 3 YnI1
+3 +3

Four Point Runge-Kutta

1 * 1 *1 1 ,
y Y +T(-Y + -Y I)~n+l =n 6 n3 nI- 1 34 n+-2 Y+l

Y n=F(XY)

T
Y 1 =F(X n+ - Yn + yn

n 2'2
2

Y =F(X + T, Y + TY 1
n+l n n n-2

24



Table 2. Program Characteristics for Numerical Methods

Method Microprogram No. of Function
Size Evaluations

Euler 4 1

Modified Euler 12 2

2nd A-B Pred. 8 1

2nd A-B P/C 22 2

Parallel P/C 5(P) 1
10(C) 1

3rd Adam's Pred. 14 1

3rd Adam's P/C 27 2

3rd Runge-Kutta 18 3

4th Runge-Kutta 27 4

-17-
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the function network to solve one row of the SPOCK state equation. For Euler's

method, one pass through the function network is required since Y can be usedn

with a stored value of Yn to compute Yn+l' However, for the Modified-Euler
.C

method, the function network must be used twice; once to compute Y which is usedn
to compute YP an Pc

n+to pe ' Yn+ which can be used to generate Yn+l' The Parallel

Adams-Bashforth P/C is again a special case in that the two function evaluations

can be done in parallel by using two hardware units.

The Runge-Kutta methods differ from the other methods in that function

values cannot be stored to reduce the computation at each step. These methods

require a number of intermediate values in going from point nT to point (n+l)T.

Each of these values represents a function evaluation resulting in a total of

three for the third order method and four for the fourth order method.

The required number of function evaluations per integration step is given

in Table 2 for each of the nine methods. These function evaluations impact

performance due to the computation delay. For most methods, this is a sequential

delay which is added to the integration time. For the Modified-Euler, the delay

can be broken down into the components shown in Figure 10. Assume the routine

has just computed YC. The next four steps will be: (I) function computation for
n

Sc (2) integration step for yp, it(3) function computation for Yp  and(2) iegainsefoYn+l Yn+l'

c

(4) integration step for Yn+l Each of these is shown in Figure 10.

C. Performance Equation

1. Definitions: A performance equation can be derived based on the delays

discussed in the two previous sections. The performance is related to the solu-

tion of a state vector of N first order differential equations. It is first

necessary to define the following parameters:

-18-
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ST - Time to compute one integration step for the state vector

DF - Function Unit Delay

D - Processor Delay in Computing one Integral Step

K - Number of passes through the function unit for one integration step

0 - Processor Overlap with function unit

N - Number of state equations

I - Number of processor modules

F - Number of function unit modules.

The processor delay, Di, is a function of the number of microinstructions and

the time it takes to execute each instruction. For predictor-corrector methods,

this delay could be separated into the predictor delay, DIP$ and the corrector

delay, DIC. However, when these two are added the result is D .I

2. Overlap Time: The overlap time, 01, represents the time associated

with certain integration routines which can be hidden by doing the calculation

in parallel with the function unit. For example, the Adams Three Point Predictor

is given by

Y 23T 4T 5T"
n+1 n 12 n - 3- Yn-i 12 n-2 (6)

While the function unit computes Yn the processor can begin the computation

based on the terms which are already known. In this case, the overlap time would

be equal to DF since several multiplies and adds can be performed before Yn

is needed. It should be noted that

0 1 DF and 01 < DI  (7)

3. Performance Equations: To illustrate the development of the performance

equations three separate cases will be considered using the Modified-Euler

integration technique. In the first case N = I = F. For this case, Figure 10

-20-
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indicates the sequence for one integration step. This sequence and the res-

* pective delays are

Step i Y D

Step 2 p D
Yn+1 IP

Step 3 "P DF

Step 4 n+l D

The resulting time is then

ST =2 DF + Dip + DIC (8)

Extending to the general solution and including the possibility of overlap with

the function units yields

ST = KDF + (DI - O1) (9)

For this particular integration routine, 01 would be zero.

In case two, let N = 3, I = 2, F = 3. The computation sequence and the

delays are then

c c c
Step 1 Yl,n Y2,n Y3,n DF

Stp2 yp ypD
Step 2 yl,n+l Y2,n+l Ip

Step 3 yp D~3,n+l I
p p DF

Step 4 yP n+1 Y2  n+l Y3, n+l F

Step c c D
Sl,n+l Y2,n+l IC

Step 6 yC +1DiStp6 Y3, n+l DIC

The computation time for the state vector is

ST =2D + 2D + 2D (10)

2F IP IC

-21-
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where S is the solution time for the multiplexed processor case.

In general, this equation becomes

S KD + DIF1 (1i)

where [Xl represents the smallest integer >X.

For the third case, let N = 3, I = 3, F 2. The computation sequence and

the associated delays are

Step 1 Yl,n Y2,n DF

Step 2 Y DF

Step 3 y P nl Yyn~ Y, n+l Dplnl2,n+l ~ 3nl IP

Step 4 yP p P D

l,n+l 2,n+l F

Step 5 yn DF3,n+lF

c c c
Step 6 Yl,n+l Y2,n+l Y3,n+l DIC

The computation time for the state vector is

STF = 4DF + Dip + DIC

(12)
= 4D F + DI

where STF is the solution time for the multiplexed function unit case. In

general, this equation becomes

S KF D + DTF F F I (13)

Equations (9), (11), and (13) represent the three cases for any of the

integration routines. In (11) and (13), the term 0 should be subtracted as in

(9). When this is included, the multiplexed times can be normalized to give

STI fl+P (14)

ST  I+P

-22-



and

STF =N+ p

F (15)
T I+P

where
DI - 0

SKDF  (16)

Equations (14), (15), and (16) indicate the relative time penalty when solving

N equations with insufficient integrators or function units. Another case which

includes an insufficient number of both units can be obtained in a similar manner

as

5TI =D1  ~ (17)sTIF I ° Il + °Fl r
Forming a relative ratio gives

The important point is that the fully parallel solution time is given by equation

(19) for one increment in the independent variable. When F = I = 1 the structure

reduces to a sequential structure and the relative time becomes

ST I +P

= N (21)

When N =I = F, the relative time becomes

STIF = [ + Di (22)
ST l+P

=I (23)

-23-
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Other forms of multiplexing the hardware will yield relative time increases of

S T < STI F < N ST  (24)

D. Error Analysis

1. Truncation Errors: When using a numerical integration routine, a

truncation error is introduced. This error is related to the difference between

the given numerical method and the Taylor Series for the expansion of a function

[18]. Typically, numerical methods will agree with the Taylor Series through the

first few terms. The first term which doesn't agree can be used to establish a

bound on the computation error. These bounds are shown in Table 3 for the first

seven numerical methods. Runge-Kutta truncation errors are more difficult to

express in this compact form. An alternate error technique is used for these

methods, called Richardson's Extrapolation [19].

To develop these error expressions, let yn and yn+1 be the true solutions

at steps n and n+l. In order to go from step n to n+l, a single step, h, can be

used once or a step of h/2 can be used twice. The solution when the step is used

twice is Y2 and the solution when the step is used once is yI. These solutions

generate errors given by

= 2r+ l  hr+l E1  (25)

Yn~l - Yr C

Yn+l - Y2 = 2 Cn hr+l E 2  (26)

where r is the order of the numerical method. When C is eliminated, the result
n

is

y = E Y2-Yl (7

Yn+l- y E2 = 2 ri (27)

This equation can be used for any of the numerical methods, but is particularly

attractive for Runge-Kutta algorithms.

-24-
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Table 3. Truncation Errors for Numerical Methods

Method Truncation Error

nT <e< (n+l)T

Euler T (E:)
2  .

T3...

Modified Euler - (y )

3

5T 3...
2nd Adams Bashforth Y (c)

Predictor

2nd Adams Bashforth T 3 (E)

Predictor/Corrector 12

Parallel Predictor/ T 3 "
Corrector 3 ()

4

3rd Adams Predictor 9T
24 Y

3rd Adams Predictor/ 
-T4....

Corrector 24

-25-



The errors for third and fourth order Runge-Kutta methods are then

Y2 -ylERRRK 3  (28)

ERRK4 < 15 (29)

where ERR. 3 and ERR, 4 represent the local truncation error in the respective

Runge-Kutta methods.

2. Round-Off Errors: Another source of error is due to finite precision

arithmetic. This error is called round-off [20]. In the SPOCK computer, all

data and calculations are carried out in 16-bit, twos complement arithmetic.

One of the objectives of the research was to establish the relative importance

of round-off error compared to truncation error.

3. Error Curves: In order to get some performance results, a particular

equation was selected. The equation

y (t) + 2 (0.139999) y(t) + y(t) = 0

(30)

y(O) = 0, y(O) = 0.75

was solved on SPOCK using all nine integration methods. True values to (30)

were obtained using the exact solution and 120-bit floating point arithmetic.

The difference between these two solutions gives the error generated by SPOCK

when solving (30). This set of error curves is shown in Figure 11 as a function

of step size. The error which is plotted is

n
ERRTOT = AT E IY20- YSPOCK i 12  (31)

i=l

where AT is the step size, Yl20 i represents the true solution at step i,

YSPOCKi is the SPOCK solution at step i, and ERRTOT is the total error. The

step size was selected by setting AT = 27/ 12'2 where i - 0, 1, 2, ..., 7.

-26-
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In order to separate the error into its two components, equation (30)

was solved by each of the numerical methods using 120 bit floating point

arithmetic. The exact values were also calculated using 120 bits. Roundoff

error in this case was assumed to be negligible. The truncation error was

calculated by

n2
ERRTo = AT iY120 - YNUMiI2 (32)

i=l

where AT is the step size.

Y120. is the true value at step i, YNUMi is the value at step i using a

particular numerical method and ERRTRU is the truncation error. The set of

error curves produced by (32) is shown in Figure 12.

The round-off error can now be determined by forming:

ERRRO = ERRTOT - ERRTRU (33)

where ERR RO is the round-off error for a particular numerical method using the

SPOCK hardware. These error curves are shown in Figure 13. The superiority

of the higher order methods can be made more specific by the following perform-

ance analysis.

E. Relative Performance

In order to assess the capability of SPOCK, the following hardware para-

meters are used:

01 0;

DI  (Number Microinstructions) x 250 nsec.

DF  500 nsec.

Using the time parameters given above, the various methods have a solution time

per step as indicated in Table 4. For example, the Modified-Euler method has a

-28-
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solution time per step of:

ST = KDF + DI - 01

= (2) (500) + (12) (250) (34)

= 4000 nsec.

The error curves can be used to pick the maximum step size for each numer-

ical method. In order to set the step size, the absolute error as a percent of

the maximum value (1.0 for the SPOCK machine) was used. A typical error curve

is shown in Figure 14 for the Modified-Euler numerical method with T = 0.1309.

This shows the maximum error to be approximately 0.6%. When T = 0.262 for this

numerical method, the maximum error exceeds 1%. Thus, for the performance

analysis, the maximum step size for the Modified-Euler method is set at T = 0.1309.

A similar analysis for the other routines leads to the maximum step sizes given

in Table 4.

The maximum step size for the Modified-Euler method is T = 0.1309 radians.. max

j Thus, the maximum frequency using the Modified-Euler method is

=0.1309 x 106 = 5208 hz. (35)
fmax 2Tr x 4.0

A similar calculation can be carried out for each method to give the upper fre-

quency limit shown in Table 4. It should be emphasized that this limit also

includes the requirement that the maximum absolute error will be less than 1%

over the solution range.

F. Stability and Convergence

The error in a numerical method is related to the stability and convergence

of the method. It is generally reported in the literature that stable methods

give good solutions [21, 22]. A more accurate statement is that a stable method

gives a solution which converges to the true solution for large values of the

independent variable.

-31-
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Table 4. SPOCK Performance Analysis

Method Time T Maximum
per Frequency

Step (psec.) (Radians) (Hz)

Euler 1.5 0.0041 434

Modified Euler 4.0 0.131 5208

2nd A-B Predictor 2.5 0.0327 2083

2nd A-B Predictor/
Corrector 6.5 0.131 3205

Parallel P/C 3.0 0.0163 868

3rd Adams Predictor 4.0 0.131 5208

3rd Adams Predictor/

Corrector 7.75 0.262 5376

3rd Runge-Kutta 6.0 0.262 6944

4th Runge-Kutta 8.75 0.524 9524
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For example, assume it is desired to solve the equation

y(t) + y(t) = 10u(t), Y(O) = 0 (36)

using Euler's method. Substituting for y(t) gives

Yn+l Yn + yn = lOu(n), Y(0) = 0 (37)
T

where T is the integration step size. Transforming to the Z-domain yields

zY(z) -T y(z) + y(z) + l0Tz (38)
Z-1

y(z) [ z + T - 1 ]= zTz (39)
z1-1

y(z) = zlTz (40)
(z-1) (z+T-1)

lOT z
=0T (41)=(z-1) (z - (1-T)) (1

The solution for Y(z) is stable provided the roots of the denominator lie within

the unit circle (the point Z - I is a special case). Thus, for stability

0 < T < 2. (42)

The solution to (41) is

ytnT) =1 0 11 - (1-T)n ] (43)

The true solution to (36) is

y(t) = 10 (1-e-t), t > 0 (44)

If this solution is examined at discrete points, the values are

y(nT) - 10 (l-e - nT ) ,n > 0 (44)

The error at discrete points is

ERROR - jy(nT) - y(nT)I = 110 (1-T)n -10 e-nTi (46)

Note that lie T -40 for the error is zero at all finite values of nT. But also

note that when T 0 0, errors exist at all points t = nT. A- important concept
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is the relative error [23] defined as

IREL ERRORI -IERRORn = I(l-T)n -enT
I y(nT)I 11-e-nTi (47)

IREL ERRORI = l1-T)n -e-nT (48)

1le_nT I

For distinct values of T the following relative errors exist

T = 0.1 IREL ERRORI = j(.9 )n e- Ln1 < 1 ; n > 0

0. 1 <lnnI

0.5 IREL ERRORI = 1(.5) n -e 5 < 1 ; n > 0

1 1 -e - '  I

T = 1.0 IREL ERRORI = 1 -e-n < 1 ; n > 0
11

- e - n

r = 1.5 IREL ERRORI (. 5) -ln < 1 ; n > 0

1l-e
- 1 5 n

n -2n

T = 2.0 IREL ERRORI =j(-1) -e > 1 n > 0
11-e-2n I

These values indicate for values of T except T = 2 the relative error is less

than one. This implies the approximate solution is "close" to the true solu-

tion or converges to the true solution. It is evident, however, that for T = 0.5

an error exists for all finite values of n. As n - - in this case, the relative

error - 0. A similar situation exists for T = 0.1, T = 1.0, T = 1.5, and in

general all T which yield a stable solution. Hence, stability implies a solution

that converges to the true solution as t + . It does not imply an accurate

solution for finite values of t = nT.

Accuracy requires an examination of the relative error. For example, con-

sider the two cases T 0.1 and T = 1.0, both of which give stable sulutions.
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The relative errors for these two cases at the same time points are

-nn

IREL ERROR (T = 0.1)1 (.9) lOn - ; n = 1, 2,
I l-e -n

IREL ERROR (T = 1.0)1 1 _en ; n = 1, 2,
-n

l-e

which shows

IREL ERROR (T = 0.1)1 < IREL ERROR (T = 1.0)1

Hence, the choice of T = 0.1 produces a more accurate solution at each point

t = nT than the choice of T = 1.0.

In general, stability of the solution is not the driving requirement on

the choice of step size. Accuracy at each step will usually dictate a much

smaller step size than the stability requirement. If the solutions to (36)

using T = 0.5, 1.0 and 1.5 are compared to the true solution as in Figure 15,

it is obvious that certain solutions are very inaccurate. These solutions are

stable and will converge to the exact solution for large values of nT. However,

in simulation work, this is seldom the case of interest. The performance analysis

section used a more conventional accuracy requirement based on the error as a

percent of the maximum value. This is the typical performance specification

used by analog/hybrid computers [24]. Further, the error limit of 1% of the max-

imum value is also consistent with analog/hybrid hardware.
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Figure 15. STABLE SOLUTIONS TO (14) FOR VARIOUS VALUES OF T.
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V. CONCLUSIONS AND RECOMMENDATIONS

A digital structure has been designed, built and tested. The results show

that a digital simulation machine can be an effective computing structure pro-

vided higher order numerical methods can be implemented. In general, the pre-

liminary conclusions can be stated as:

1. The computing structure is simple and only requires five distinct

modules.

2. The number of busses is proportional to the order of the differ-

ential equations.

3. For a general structure, the interconnection of the busses and

device modules is the most complicated aspect of the structure.

4. The processor modules require only elementary software to con-

figure them as a specific integrator.

5. The sequencing of the structure to carry out the solution of a

set of state equations is simple. It has been done in software

with only a few instructions, but can be done with hardware to

improve the speed. The hardware solution is about the same complexity

as one of the processor modules.

6. One typical system equation has been solved and evaluated. In

general, higher order numerical methods give superior performance.

For these methods 16-bit arithmetic is more accurate than the

associated truncation errors.

7. Performance using less than state of the art digital technology

will give real-time solutions of equations with frequency components

up to 10 KHZ. The accuracy of the solutions will be approximately

1% of the maximum range. Improved technology could easily raise the

frequency limit.
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SPOCK I represents only the first step in a novel application of computer

architecture to a special computing problem. The design was limited in scope

and did not attempt to cover all classes of problems which could possibly be

solved by such a structure. The following list presents a number of topics

for further study and work to extend the field of knowledge in this area.

1. Software translator for automatic program set-up and sequencing.

2. Automatic scaling when variables exceed the overflow limit.

3. Extension to include time varying coefficients and nonlinear functions.

4. Extension to include a user interface for direct entry of an equation

and a display of the solution.

5. Additional study on truncation errors, round-off errors and total error

to ascertain the effect of additional poles or zeroes on these error com-

ponents. The work thus far has concentrated on a dominant pair of complex

poles in the differential equation. It is believed, though not verified,

that this pair will set the limits on the maximum step size.

6. Additional study on performance improvements via alternate structures,

custom hardware chips and different bussing concepts.
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